EconPapers    
Economics at your fingertips  
 

Online Routing Over Parallel Networks: Deterministic Limits and Data-driven Enhancements

Devansh Jalota (), Dario Paccagnan (), Maximilian Schiffer () and Marco Pavone ()
Additional contact information
Devansh Jalota: Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305
Dario Paccagnan: Department of Computing, Imperial College London, London SW7 2BX, United Kingdom
Maximilian Schiffer: TUM School of Management, Technical University of Munich, Munich 80333, Germany
Marco Pavone: Department of Aeronautics and Astronautics, Stanford University, Stanford, California 94305

INFORMS Journal on Computing, 2023, vol. 35, issue 3, 560-577

Abstract: Over the past decade, GPS-enabled traffic applications such as Google Maps and Waze have become ubiquitous and have had a significant influence on billions of daily commuters’ travel patterns. A consequence of the online route suggestions of such applications, for example, via greedy routing, has often been an increase in traffic congestion since the induced travel patterns may be far from the system optimum. Spurred by the widespread impact of traffic applications on travel patterns, this work studies online traffic routing in the context of capacity-constrained parallel road networks and analyzes this problem from two perspectives. First, we perform a worst-case analysis to identify the limits of deterministic online routing. Although we find that deterministic online algorithms achieve finite, problem/instance-dependent competitive ratios in special cases, we show that for a general setting the competitive ratio is unbounded. This result motivates us to move beyond worst-case analysis. Here, we consider algorithms that exploit knowledge of past problem instances and show how to design data-driven algorithms whose performance can be quantified and formally generalized to unseen future instances. We then present numerical experiments based on an application case for the San Francisco Bay Area to evaluate the performance of the proposed data-driven algorithms compared with the greedy algorithm and two look-ahead heuristics with access to additional information on the values of time and arrival time parameters of users. Our results show that the developed data-driven algorithms outperform commonly used greedy online-routing algorithms. Furthermore, our work sheds light on the interplay between data availability and achievable solution quality.

Keywords: online algorithms; competitive analysis; traffic routing; scenario approach (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://dx.doi.org/10.1287/ijoc.2023.1275 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orijoc:v:35:y:2023:i:3:p:560-577

Access Statistics for this article

More articles in INFORMS Journal on Computing from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orijoc:v:35:y:2023:i:3:p:560-577