EconPapers    
Economics at your fingertips  
 

Learning Curves of Agents with Diverse Skills in Information Technology-Enabled Physician Referral Systems

Tridas Mukhopadhyay (), ParamVir Singh () and Seung Hyun Kim ()
Additional contact information
Tridas Mukhopadhyay: Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
ParamVir Singh: Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Seung Hyun Kim: Department of Information Systems, National University of Singapore, Singapore 117417

Information Systems Research, 2011, vol. 22, issue 3, 586-605

Abstract: To improve operational efficiencies while providing state of the art healthcare services, hospitals rely on information technology enabled physician referral systems (IT-PRS). This study examines learning curves in an IT-PRS setting to determine whether agents achieve performance improvements from cumulative experience at different rates and how information technologies transform the learning dynamics in this setting. We present a hierarchical Bayes model that accounts for different agent skills (domain and system) and estimate learning rates for three types of referral requests: emergency (EM), nonemergency (NE), and nonemergency out of network (NO). Furthermore, the model accounts for learning spillovers among the three referral request types and the impact of system upgrade on learning rates. We estimate this model using data from more than 80,000 referral requests to a large IT-PRS. We find that: (1) The IT-PRS exhibits a learning rate of 4.5% for EM referrals, 7.2% for NE referrals, and 12.3% for NO referrals. This is slower than the learning rate of manufacturing (on average 20%) and more comparable to other service settings (on average, 8%). (2) Domain and system experts are found to exhibit significantly different learning behaviors. (3) Significant and varying learning spillovers among the three referral request types are also observed. (4) The performance of domain experts is affected more adversely in comparison to system experts immediately after system upgrade. (5) Finally, the learning rate change subsequent to system upgrade is also higher for system experts in comparison to domain experts. Overall, system upgrades are found to have a long-term positive impact on the performance of all agents. This study contributes to the development of theoretically grounded understanding of learning behaviors of domain and system experts in an IT-enabled critical healthcare service setting.

Keywords: domain experts; system experts; healthcare IT; learning curves; IT-enabled call centers (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://dx.doi.org/10.1287/isre.1110.0359 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orisre:v:22:y:2011:i:3:p:586-605

Access Statistics for this article

More articles in Information Systems Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orisre:v:22:y:2011:i:3:p:586-605