EconPapers    
Economics at your fingertips  
 

sDTM: A Supervised Bayesian Deep Topic Model for Text Analytics

Yi Yang (), Kunpeng Zhang () and Yangyang Fan ()
Additional contact information
Yi Yang: Department of Information Systems, Business Statistics and Operations Management, Hong Kong University of Science and Technology, Hong Kong
Kunpeng Zhang: Department of Decision, Operations and Information Technologies, Robert H. Smith School of Business, University of Maryland, College Park, College Park, Maryland 20742
Yangyang Fan: School of Accounting and Finance, Faculty of Business, Hong Kong Polytechnic University, Hong Kong

Information Systems Research, 2023, vol. 34, issue 1, 137-156

Abstract: Topic modeling methods such as latent Dirichlet allocation (LDA) are powerful tools for analyzing massive amounts of textual data. They have been used extensively in information systems (IS) and business discipline research to identify latent topics for data exploration and as a feature engineering mechanism to derive new variables for analyses. However, existing topic modeling approaches are mostly unsupervised and only leverage textual data, while ignoring additional useful metadata often associated with text, such as star ratings in customer reviews or categories of posts in online forums. As a result, the identified topics and variables derived based on the learned topic model may not be accurate, which could lead to incorrect estimations that affect subsequent empirical analysis and to inferior performance on predictive tasks. In this study, we propose a novel supervised deep topic modeling approach called sDTM, which combines a neural variational autoencoder model and a recurrent neural network. sDTM leverages the auxiliary data associated with text to enhance the topic modeling capability. We conduct empirical case studies and predictive analytics on an online consumer review data set and an online knowledge community data set. Experimental results show that in comparison with benchmark methods, sDTM can enhance both the empirical estimation and predictive performance. sDTM makes methodological contributions to the IS literature and has direct relevance for research using text analytics.

Keywords: supervised topic modeling; Bayesian variational inference; deep learning; text analysis (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/isre.2022.1124 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:orisre:v:34:y:2023:i:1:p:137-156

Access Statistics for this article

More articles in Information Systems Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:orisre:v:34:y:2023:i:1:p:137-156