EconPapers    
Economics at your fingertips  
 

A Hidden Markov Model of Customer Relationship Dynamics

Oded Netzer (), James M. Lattin () and V. Srinivasan ()
Additional contact information
Oded Netzer: Graduate School of Business, Columbia University, New York, New York 10027
James M. Lattin: Graduate School of Business, Stanford University, Stanford, California 94305
V. Srinivasan: Graduate School of Business, Stanford University, Stanford, California 94305

Marketing Science, 2008, vol. 27, issue 2, 185-204

Abstract: This research models the dynamics of customer relationships using typical transaction data. Our proposed model permits not only capturing the dynamics of customer relationships, but also incorporating the effect of the sequence of customer-firm encounters on the dynamics of customer relationships and the subsequent buying behavior. Our approach to modeling relationship dynamics is structurally different from existing approaches. Specifically, we construct and estimate a nonhomogeneous hidden Markov model to model the transitions among latent relationship states and effects on buying behavior. In the proposed model, the transitions between the states are a function of time-varying covariates such as customer-firm encounters that could have an enduring impact by shifting the customer to a different (unobservable) relationship state. The proposed model enables marketers to dynamically segment their customer base and to examine methods by which the firm can alter long-term buying behavior. We use a hierarchical Bayes approach to capture the unobserved heterogeneity across customers. We calibrate the model in the context of alumni relations using a longitudinal gift-giving data set. Using the proposed model, we probabilistically classify the alumni base into three relationship states and estimate the effect of alumni-university interactions, such as reunions, on the movement of alumni between these states. Additionally, we demonstrate improved prediction ability on a hold-out sample.

Keywords: customer relationship management; hidden Markov models; dynamic choice models; segmentation; Bayesian analysis (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (117)

Downloads: (external link)
http://dx.doi.org/10.1287/mksc.1070.0294 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormksc:v:27:y:2008:i:2:p:185-204

Access Statistics for this article

More articles in Marketing Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-04-17
Handle: RePEc:inm:ormksc:v:27:y:2008:i:2:p:185-204