EconPapers    
Economics at your fingertips  
 

No Customer Left Behind: A Distribution-Free Bayesian Approach to Accounting for Missing Xs in Marketing Models

Yi Qian () and Hui Xie ()
Additional contact information
Yi Qian: Department of Marketing, Kellogg School of Management, Northwestern University, Evanston, Illinois 60208
Hui Xie: Division of Epidemiology and Biostatistics, University of Illinois, Chicago, Illinois 60612

Marketing Science, 2011, vol. 30, issue 4, 717-736

Abstract: In marketing applications, it is common that some key covariates in a regression model, such as marketing mix variables or consumer profiles, are subject to missingness. The convenient method that excludes the consumers with missingness in any covariate can result in a substantial loss of efficiency and may lead to strong selection bias in the estimation of consumer preferences and sensitivities. To solve these problems, we propose a new Bayesian distribution-free approach, which can ensure that no customer is left behind in the analysis as a result of missing covariates. In this way, all customers are being considered in devising managerial policies. The proposed approach allows for flexible modeling of a joint distribution of multidimensional interrelated covariates that can contain both continuous and discrete variables. At the same time, it minimizes the impact of distributional assumptions involved in covariate modeling because the method does not require researchers to specify parametric distributions for covariates and can automatically generate suitable distributions for missing covariates. We have developed an efficient Markov chain Monte Carlo algorithm for inference. Besides robustness and flexibility, the proposed approach reduces modeling and computational efforts associated with missing covariates and therefore makes the missing covariate problems easier to handle. We evaluate the performance of the proposed method using extensive simulation studies. We then illustrate the method in two real data examples in which missing covariates occur: a mixed multinomial logit discrete-choice model in a ketchup data set and a hierarchical probit purchase incidence model in a retail store data set. These analyses demonstrate that the proposed method overcomes several important limitations of existing approaches for solving missing covariate problems and offers opportunities to make better managerial decisions with the current available marketing databases. Although our applications focus on consumer-level data, the proposed method is general and can be applied to other marketing applications where other types of marketing players are the units of analysis.

Keywords: CRM; hierarchical Bayesian; individual marketing; marketing mix variable; MCMC; missing covariates (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://dx.doi.org/10.1287/mksc.1110.0648 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormksc:v:30:y:2011:i:4:p:717-736

Access Statistics for this article

More articles in Marketing Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormksc:v:30:y:2011:i:4:p:717-736