Analyzing Moment-to-Moment Data Using a Bayesian Functional Linear Model: Application to TV Show Pilot Testing
Sam K. Hui (),
Tom Meyvis () and
Henry Assael ()
Additional contact information
Sam K. Hui: Stern School of Business, New York University, New York, New York 10012
Tom Meyvis: Stern School of Business, New York University, New York, New York 10012
Henry Assael: Stern School of Business, New York University, New York, New York 10012
Marketing Science, 2014, vol. 33, issue 2, 222-240
Abstract:
Researchers often collect continuous consumer feedback (moment-to-moment, or MTM, data) to understand how consumers respond to a variety of experiences (e.g., viewing a TV show, undergoing a colonoscopy). Analyzing how MTM judgments are integrated into overall evaluations allows researchers to determine how the structure of an experience influences consumers' post-experience satisfaction. However, this analysis is challenging because of the functional nature of MTM data. As such, previous research has typically been limited to identifying the influence of heuristics, such as relying on the average intensity, peak, and ending.We develop a Bayesian functional linear model to study how the different “moments” in the MTM data contribute to the overall judgment. Our approach incorporates a (temporally) weighted average of MTM data as well as specific “patterns” such as peak and trough, thus nesting previous approaches such as the “peak-end” rule as special cases. We apply our methodology to analyze data on TV show pilots collected by CBS. Our results reveal several interesting empirical findings. First, the last quintile of a TV show is weighted about four times as much as each of the first four quintiles. Second, patterns such as peak and trough do not play substantial roles in driving overall evaluations for TV shows. Finally, the last quintile is more important for procedural dramas than for serial dramas. We discuss the managerial implications of our results and other potential applications of our general methodology.
Keywords: moment-to-moment data; functional data analysis; Bayesian functional linear model; TV show pilot testing; peak-end rule (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://dx.doi.org/10.1287/mksc.2013.0835 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormksc:v:33:y:2014:i:2:p:222-240
Access Statistics for this article
More articles in Marketing Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().