Recommending Products When Consumers Learn Their Preference Weights
Daria Dzyabura and
John R. Hauser ()
Additional contact information
John R. Hauser: MIT Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
Marketing Science, 2019, vol. 38, issue 3, 417-441
Abstract:
Consumers often learn the weights they ascribe to product attributes (“preference weights”) as they search. For example, after test driving cars, a consumer might find that he or she undervalued trunk space and overvalued sunroofs. Preference-weight learning makes optimal search complex because each time a product is searched, updated preference weights affect the expected utility of all products and the value of subsequent optimal search. Product recommendations, which take preference-weight learning into account, help consumers search. We motivate a model in which consumers learn (update) their preference weights. When consumers learn preference weights, it may not be optimal to recommend the product with the highest option value, as in most search models, or the product most likely to be chosen, as in traditional recommendation systems. Recommendations are improved if consumers are encouraged to search products with diverse attribute levels, products that are undervalued, or products for which recommendation-system priors differ from consumers’ priors. Synthetic data experiments demonstrate that proposed recommendation systems outperform benchmark recommendation systems, especially when consumers are novices and when recommendation systems have good priors. We demonstrate empirically that consumers learn preference weights during search, that recommendation systems can predict changes, and that a proposed recommendation system encourages learning.
Keywords: recommendation systems; learned preferences; multiattribute utility; consumer search (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
https://doi.org/10.1287/mksc.2018.1144 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormksc:v:38:y:2019:i:3:p:417-441
Access Statistics for this article
More articles in Marketing Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().