Superior Knowledge, Price Discrimination, and Customer Inspection
Xi Li () and
Zibin Xu ()
Additional contact information
Xi Li: Faculty of Business and Economics, University of Hong Kong, Hong Kong
Zibin Xu: College of Business, City University of Hong Kong, Hong Kong
Marketing Science, 2022, vol. 41, issue 6, 1097-1117
Abstract:
Firms in many industries obtain superior knowledge of customer preferences through industry experience or data analytics, whereas customers often need costly efforts to learn their match values. In this paper, we examine the situations under which a customer chooses whether to inspect upon observing her personalized price from a firm with superior knowledge. On the surface, it seems that the firm can use personalized prices to directly communicate the customers’ match value, and thus there is no need for customers to expend inspection efforts. However, we find that in equilibrium the firm may trick low-preference customers into overpaying more than their match value, even when the inspection cost is low. The opportunistic incentives induce customer suspicions, which may lead to excessive customer inspection that would be avoided if the firm were not capable of price discrimination. Therefore, personalized pricing cannot obviate customer inspection. Since inspection cost raises a deadweight loss in social welfare, public policies that prevent firms from price-discriminating against customers may benefit both firms and customers.
Keywords: superior knowledge; price discrimination; customer inspection; consumer privacy; signaling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://dx.doi.org/10.1287/mksc.2022.1355 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormksc:v:41:y:2022:i:6:p:1097-1117
Access Statistics for this article
More articles in Marketing Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().