The Cascade Algorithm for Finding all Shortest Distances in a Directed Graph
B. A. Farbey,
A. H. Land and
J. D. Murchland
Additional contact information
B. A. Farbey: London School of Economics
A. H. Land: London School of Economics
J. D. Murchland: London Graduate School of Business Studies
Management Science, 1967, vol. 14, issue 1, 19-28
Abstract:
Matrix methods for finding shortest distances are convenient and efficient when the lengths of shortest paths are wanted between all pairs of vertices in a graph. The Cascade algorithm requires substantially fewer operations to find these distances than does the standard matrix method.
Date: 1967
References: Add references at CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/mnsc.14.1.19 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:14:y:1967:i:1:p:19-28
Access Statistics for this article
More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().