Multiple Objective Linear Programming with Interval Criterion Weights
Ralph E. Steuer
Additional contact information
Ralph E. Steuer: University of Kentucky
Management Science, 1976, vol. 23, issue 3, 305-316
Abstract:
The purpose of this research is to develop a computer applicable methodology for analyzing multiple objective linear programming problems when interval, rather than fixed, weights are assigned to each of the objectives. Rather than obtaining a single efficient extreme point as one would normally expect with fixed weights, a cluster of efficient extreme points is typically generated when interval weights are specified. Then, from the subset of solutions generated, it is contemplated, that the decision-maker will be able to qualitatively identify his efficient extreme point of greatest utility (which should either be the decision-maker's optimal point or be close enough to it to terminate the decision process). The procedure presented in this paper involves converting the multiple objective linear programming problem with interval criterion weights into an equivalent vector-maximum problem. Once in such form, an algorithm for the vector-maximum problem can then be used to determine the subset of "efficient extreme" points corresponding to the interval weights specified. General computational experience regarding the operation of the equivalent vector-maximum problem is reported. Also, a numerical example is provided to illustrate the total procedure described.
Date: 1976
References: Add references at CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://dx.doi.org/10.1287/mnsc.23.3.305 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:23:y:1976:i:3:p:305-316
Access Statistics for this article
More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().