Reality Check: Combining Choice Experiments with Market Data to Estimate the Importance of Product Attributes
Eleanor McDonnell Feit (),
Mark A. Beltramo () and
Fred M. Feinberg ()
Additional contact information
Eleanor McDonnell Feit: Stephen M. Ross School of Business, University of Michigan, Ann Arbor, Michigan 48109
Mark A. Beltramo: General Motors Research and Development, Warren, Michigan 48090
Fred M. Feinberg: Stephen M. Ross School of Business, University of Michigan, Ann Arbor, Michigan 48109
Management Science, 2010, vol. 56, issue 5, 785-800
Abstract:
Discrete choice models estimated using hypothetical choices made in a survey setting (i.e., choice experiments) are widely used to estimate the importance of product attributes in order to make product design and marketing mix decisions. Choice experiments allow the researcher to estimate preferences for product features that do not yet exist in the market. However, parameters estimated from experimental data often show marked inconsistencies with those inferred from the market, reducing their usefulness in forecasting and decision making. We propose an approach for combining choice-based conjoint data with individual-level purchase data to produce estimates that are more consistent with the market. Unlike prior approaches for calibrating conjoint models so that they correctly predict aggregate market shares for a "baseline" market, the proposed approach is designed to produce parameters that are more consistent with those that can be inferred from individual-level market data. The proposed method relies on a new general framework for combining two or more sources of individual-level choice data to estimate a hierarchical discrete choice model. Past approaches to combining choice data assume that the population mean for the parameters is the same across both data sets and require that data sets are sampled from the same population. In contrast, we incorporate in the model individual characteristic variables, and assert only that the mapping between individuals' characteristics and their preferences is the same across the data sets. This allows the model to be applied even if the sample of individuals observed in each data set is not representative of the population as a whole, so long as appropriate product-use variables are collected that can explain the systematic deviations between them. The framework also explicitly incorporates a model for the individual characteristics, which allows us to use Bayesian missing-data techniques to handle the situation where each data set contains different demographic variables. This makes the method useful in practice for a wide range of existing market and conjoint data sets. We apply the method to a set of conjoint and market data for minivan choice and find that the proposed method predicts holdout market choices better than a model estimated from conjoint data alone or a model that does not include demographic variables.
Keywords: discrete choice modeling; conjoint analysis; choice experiments; data enrichment; hierarchical models; missing-data methods; Bayesian estimation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://dx.doi.org/10.1287/mnsc.1090.1136 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:56:y:2010:i:5:p:785-800
Access Statistics for this article
More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().