Sequential Sampling with Economics of Selection Procedures
Stephen E. Chick () and
Peter Frazier ()
Additional contact information
Stephen E. Chick: Technology and Operations Management Area, INSEAD, 77305 Fontainebleau, France
Peter Frazier: Department of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853
Management Science, 2012, vol. 58, issue 3, 550-569
Abstract:
Sequential sampling problems arise in stochastic simulation and many other applications. Sampling is used to infer the unknown performance of several alternatives before one alternative is selected as best. This paper presents new economically motivated fully sequential sampling procedures to solve such problems, called economics of selection procedures. The optimal procedure is derived for comparing a known standard with one alternative whose unknown reward is inferred with sampling. That result motivates heuristics when multiple alternatives have unknown rewards. The resulting procedures are more effective in numerical experiments than any previously proposed procedure of which we are aware and are easily implemented. The key driver of the improvement is the use of dynamic programming to model sequential sampling as an option to learn before selecting an alternative. It accounts for the expected benefit of adaptive stopping policies for sampling, rather than of one-stage policies, as is common in the literature. This paper was accepted by Assaf Zeevi, stochastic models and simulation.
Keywords: simulation; statistical analysis; probability; diffusion; decision analysis; dynamic programming; Bayesian (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)
Downloads: (external link)
http://dx.doi.org/10.1287/mnsc.1110.1425 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:58:y:2012:i:3:p:550-569
Access Statistics for this article
More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().