EconPapers    
Economics at your fingertips  
 

A Behavioral Model of Forecasting: Naive Statistics on Mental Samples

Jordan Tong () and Daniel Feiler ()
Additional contact information
Jordan Tong: Wisconsin School of Business, University of Wisconsin–Madison, Madison, Wisconsin 53703
Daniel Feiler: Tuck School of Business, Dartmouth College, Hanover, New Hampshire 03755

Management Science, 2017, vol. 63, issue 11, 3609-3627

Abstract: Most operations models assume individuals make decisions based on a perfect understanding of random variables or stochastic processes. In reality, however, individuals are subject to cognitive limitations and make systematic errors. We leverage established psychology on sample naivete to model individuals’ forecasting errors and biases in a way that is portable to operations models. The model has one behavioral parameter and embeds perfect rationality as a special case. We use the model to mathematically characterize point and error forecast behavior, reflecting an individual’s beliefs about the mean and variance of a random variable. We then derive 10 behavioral phenomena that are inconsistent with perfect rationality assumptions but supported by existing empirical evidence. Finally, we apply the model to two operations settings, inventory management and queuing, to illustrate the model’s portability and discuss its numerous predictions. For inventory management, we characterize order decisions assuming behavioral demand forecasting. The model predicts that even under automated cost optimization, one should expect a pull-to-center effect. It also predicts that this effect can be mitigated by separating point forecasting from error forecasting. For base stock models, it predicts that safety stocks are too small (large) for short (long) lead times. We also express the steady-state behavior of a queue with balking, assuming rational joining decisions but behavioral wait-time forecasts. The model predicts that joining customers tend to be disappointed in their experienced waits. Also, for long (short) lines, it predicts customers have more (less) disperse wait-time beliefs and tend to overestimate (underestimate) the true wait-time variance.

Keywords: behavioral operations; bounded rationality; forecasting; representativeness; optimizer’s curse; overconfidence; law of small numbers; newsvendor; inventory; queuing; judgment and decision making (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://doi.org/10.1287/mnsc.2016.2537 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:63:y:2017:i:11:p:3609-3627

Access Statistics for this article

More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormnsc:v:63:y:2017:i:11:p:3609-3627