An Empirical Bargaining Model with Left-Digit Bias: A Study on Auto Loan Monthly Payments
Zhenling Jiang ()
Additional contact information
Zhenling Jiang: The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Management Science, 2022, vol. 68, issue 1, 442-465
Abstract:
This paper studies price bargaining when both parties have left-digit bias when processing numbers. The empirical analysis focuses on the auto finance market in the United States, using a large data set of 35 million auto loans. Incorporating left-digit bias in bargaining is motivated by several intriguing observations. The scheduled monthly payments of auto loans bunch at both $9- and $0-ending digits, especially over $100 marks. In addition, $9-ending loans carry a higher interest rate, and $0-ending loans have a lower interest rate. We develop a Nash bargaining model that allows for left-digit bias from both consumers and finance managers of auto dealers. Results suggest that both parties are subject to this basic human bias: the perceived difference between $9- and the next $0-ending payments is larger than $1, especially between $99- and $00-ending payments. The proposed model can explain the phenomena of payments bunching and differential interest rates for loans with different ending digits. We use counterfactuals to show a nuanced impact of left-digit bias, which can both increase and decrease the payments. Overall, bias from both sides leads to a $33 increase in average payment per loan compared with a benchmark case with no bias.
Keywords: bargaining; left-digit bias; auto finance; dealer compensation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://dx.doi.org/10.1287/mnsc.2020.3923 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:68:y:2022:i:1:p:442-465
Access Statistics for this article
More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().