Smart “Predict, then Optimize”
Adam N. Elmachtoub () and
Paul Grigas ()
Additional contact information
Adam N. Elmachtoub: Department of Industrial Engineering and Operations Research and Data Science Institute, Columbia University, New York, New York 10027
Paul Grigas: Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, California 94720
Management Science, 2022, vol. 68, issue 1, 9-26
Abstract:
Many real-world analytics problems involve two significant challenges: prediction and optimization. Because of the typically complex nature of each challenge, the standard paradigm is predict-then-optimize. By and large, machine learning tools are intended to minimize prediction error and do not account for how the predictions will be used in the downstream optimization problem. In contrast, we propose a new and very general framework, called Smart “Predict, then Optimize” (SPO), which directly leverages the optimization problem structure—that is, its objective and constraints—for designing better prediction models. A key component of our framework is the SPO loss function, which measures the decision error induced by a prediction. Training a prediction model with respect to the SPO loss is computationally challenging, and, thus, we derive, using duality theory, a convex surrogate loss function, which we call the SPO+ loss. Most importantly, we prove that the SPO+ loss is statistically consistent with respect to the SPO loss under mild conditions. Our SPO+ loss function can tractably handle any polyhedral, convex, or even mixed-integer optimization problem with a linear objective. Numerical experiments on shortest-path and portfolio-optimization problems show that the SPO framework can lead to significant improvement under the predict-then-optimize paradigm, in particular, when the prediction model being trained is misspecified. We find that linear models trained using SPO+ loss tend to dominate random-forest algorithms, even when the ground truth is highly nonlinear.
Keywords: prescriptive analytics; data-driven optimization; machine learning; linear regression (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://dx.doi.org/10.1287/mnsc.2020.3922 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:68:y:2022:i:1:p:9-26
Access Statistics for this article
More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().