Machine-Learning-Based Return Predictors and the Spanning Controversy in Macro-Finance
Jingzhi Huang and
Zhan Shi ()
Additional contact information
Zhan Shi: PBC School of Finance, Tsinghua University, Beijing 100083, China
Management Science, 2023, vol. 69, issue 3, 1780-1804
Abstract:
We propose a two-step machine learning algorithm—the Supervised Adaptive Group LASSO (SAGLasso) method—that is suitable for constructing parsimonious return predictors from a large set of macro variables. We apply this method to government bonds and a set of 917 macro variables and construct a new, transparent, and easy-to-interpret macro variable with significant out-of-sample predictive power for excess bond returns. This new macro factor, termed the SAGLasso factor, is a linear combination of merely 30 selected macro variables out of 917. Furthermore, it can be decomposed into three sublevel factors: a novel housing factor, an employment factor, and an inflation factor. Importantly, the predictive power of the SAGLasso factor is robust to bond yields, namely, the SAGLasso factor is not spanned by bond yields. Moreover, we show that the unspanned variation of the SAGLasso factor cannot be attributed to yield measurement error or macro measurement error. The SAGLasso factor therefore provides a potential resolution to the spanning controversy in the macro-finance literature.
Keywords: machine learning; group lasso; macro-based return predictors; spanning controversy; macro-finance term-structure models (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://dx.doi.org/10.1287/mnsc.2022.4386 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:69:y:2023:i:3:p:1780-1804
Access Statistics for this article
More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().