EconPapers    
Economics at your fingertips  
 

Weak Signal Asymptotics for Sequentially Randomized Experiments

Xu Kuang () and Stefan Wager ()
Additional contact information
Xu Kuang: Graduate School of Business, Stanford University, Stanford, California 94305
Stefan Wager: Graduate School of Business, Stanford University, Stanford, California 94305

Management Science, 2024, vol. 70, issue 10, 7024-7041

Abstract: We use the lens of weak signal asymptotics to study a class of sequentially randomized experiments, including those that arise in solving multiarmed bandit problems. In an experiment with n time steps, we let the mean reward gaps between actions scale to the order 1 / n to preserve the difficulty of the learning task as n grows. In this regime, we show that the sample paths of a class of sequentially randomized experiments—adapted to this scaling regime and with arm selection probabilities that vary continuously with state—converge weakly to a diffusion limit, given as the solution to a stochastic differential equation. The diffusion limit enables us to derive refined, instance-specific characterization of stochastic dynamics and to obtain several insights on the regret and belief evolution of a number of sequential experiments including Thompson sampling (but not upper-confidence bound, which does not satisfy our continuity assumption). We show that all sequential experiments whose randomization probabilities have a Lipschitz-continuous dependence on the observed data suffer from suboptimal regret performance when the reward gaps are relatively large. Conversely, we find that a version of Thompson sampling with an asymptotically uninformative prior variance achieves near-optimal instance-specific regret scaling, including with large reward gaps, but these good regret properties come at the cost of highly unstable posterior beliefs.

Keywords: diffusion approximation; multiarmed bandit; Thompson sampling (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/mnsc.2023.4964 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:70:y:2024:i:10:p:7024-7041

Access Statistics for this article

More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormnsc:v:70:y:2024:i:10:p:7024-7041