EconPapers    
Economics at your fingertips  
 

How Do Product Recommendations Help Consumers Search? Evidence from a Field Experiment

Xiang (Shawn) Wan (), Anuj Kumar () and Xitong Li ()
Additional contact information
Xiang (Shawn) Wan: Leavey School of Business, Santa Clara University, Santa Clara, California 95053
Anuj Kumar: Warrington College of Business, University of Florida, Gainesville, Florida 32611
Xitong Li: Department of Information Systems and Operations Management, HEC Paris, 78351 Jouy-en-Josas, France

Management Science, 2024, vol. 70, issue 9, 5776-5794

Abstract: Product recommendations can benefit consumers’ online product search via multiple underlying mechanisms, such as showing products that offer them high value, facilitating navigation on the website, or exposing more product information. However, it is unclear ex ante which is the primary underlying mechanism that drives the benefits of product recommendations to consumers. We conducted a randomized field experiment to estimate the benefits of an item-based collaborative filtering (CF) recommendation system to consumers. We collect unique data on the affinity scores computed by an item-based CF algorithm to develop measures of a product’s net value and horizontal (taste) fit for consumers. Our results indicate that product recommendations help consumers search for higher-value products that are lower priced, fit their tastes better, or both. Besides that, we find that the ability to find higher-value products (rather than easy navigation or exposure to more product information) is the primary driver for consumers’ higher purchase probabilities under recommendations. We further find a higher benefit of recommendations in product categories with higher price dispersion and heterogeneity in consumers’ tastes, providing additional evidence for the lower price and better horizontal fit mechanisms. Finally, we find that when made available, consumers substitute their usage of other search tools on the website with product recommendations. Our findings have important implications for online retailers, policymakers, regulators, and item-based CF recommendation system design.

Keywords: product recommendations; benefits of recommendations; consumer search; horizontal fit; field experiment (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/mnsc.2023.4951 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:70:y:2024:i:9:p:5776-5794

Access Statistics for this article

More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormnsc:v:70:y:2024:i:9:p:5776-5794