EconPapers    
Economics at your fingertips  
 

Submodular Order Functions and Assortment Optimization

Rajan Udwani ()
Additional contact information
Rajan Udwani: Industrial Engineering and Operations Research, University of California, Berkeley, California 94720

Management Science, 2025, vol. 71, issue 1, 202-218

Abstract: We define a new class of set functions that, in addition to being monotone and subadditive, also admit a very limited form of submodularity defined over a permutation of the ground set. We refer to this permutation as a submodular order. This class of functions includes monotone submodular functions as a subfamily. We give fast algorithms with strong approximation guarantees for maximizing submodular order functions under a variety of constraints and show a nearly tight upper bound on the highest approximation guarantee achievable by algorithms with polynomial query complexity. Applying this new notion to the problem of constrained assortment optimization in fundamental choice models, we obtain new algorithms that are both faster and have stronger approximation guarantees (in some cases, first algorithm with constant factor guarantee). We also show an intriguing connection to the maximization of monotone submodular functions in the streaming model, where we recover best known approximation guarantees as a corollary of our results.

Keywords: submodular order; assortment optimization; approximation algorithms (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/mnsc.2021.04108 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:71:y:2025:i:1:p:202-218

Access Statistics for this article

More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormnsc:v:71:y:2025:i:1:p:202-218