Should Bank Stress Tests Be Fair?
Paul Glasserman () and
Mike Li ()
Additional contact information
Paul Glasserman: Columbia Business School, New York, New York 10027
Mike Li: Columbia Business School, New York, New York 10027
Management Science, 2025, vol. 71, issue 1, 262-278
Abstract:
Regulatory stress tests have become one of the main tools for setting capital requirements at the largest U.S. banks. The Federal Reserve uses confidential models to evaluate bank-specific outcomes for bank-specific portfolios in shared stress scenarios. As a matter of policy, the same models are used for all banks, despite considerable heterogeneity across institutions; individual banks have contended that some models are not suited to their businesses. Motivated by this debate, we ask, what is a fair aggregation of individually tailored models into a common model? We argue that simply pooling data across banks treats banks equally but is subject to two deficiencies: it may distort the impact of legitimate portfolio features, and it is vulnerable to implicit misdirection of legitimate information to infer bank identity. We compare various notions of regression fairness to address these deficiencies, considering both forecast accuracy and equal treatment. In the setting of linear models, we argue for estimating and then discarding centered bank fixed effects as preferable to simply ignoring differences across banks. We also discuss extensions to nonlinear models.
Keywords: finance; financial institutions: banks; economics: econometrics; statistics (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/mnsc.2022.02060 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormnsc:v:71:y:2025:i:1:p:262-278
Access Statistics for this article
More articles in Management Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().