Effective Online Order Acceptance Policies for Omnichannel Fulfillment
Su Jia (),
Jeremy Karp (),
R. Ravi () and
Sridhar Tayur ()
Additional contact information
Su Jia: Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Jeremy Karp: Marketplace Optimization, Lyft Inc, San Francisco, California
R. Ravi: Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Sridhar Tayur: Tepper School of Business, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Manufacturing & Service Operations Management, 2022, vol. 24, issue 3, 1650-1663
Abstract:
Problem definition: Omnichannel retailing has led to the use of traditional stores as fulfillment centers for online orders. Omnichannel fulfillment problems have two components: (1) accepting a certain number of online orders prior to seeing store demands and (2) satisfying (or filling) some of these accepted online demands as efficiently as possible with any leftover inventory after store demands have been met. Hence, there is a fundamental trade-off between store cancellations of accepted online orders and potentially increased profits because of more acceptances of online orders. We study this joint problem of online order acceptance and fulfillment (including cancellations) to minimize total costs, including shipping charges and cancellation penalties in single-period and limited multiperiod settings. Academic/practical relevance: Despite the growing importance of omnichannel fulfillment via online orders, our work provides the first study incorporating cancellation penalties along with fulfillment costs. Methodology: We build a two-stage stochastic model. In the first stage, the retailer sets a policy specifying which online orders it will accept. The second stage represents the process of fulfilling online orders after the uncertain quantities of in-store purchases are revealed. We analyze threshold policies that accept online orders as long as the inventories are above a global threshold, a local threshold per region, or a hybrid. Results: For a single period, total costs are unimodal as a function of the global threshold and unimodal as a function of a single local threshold holding all other local thresholds at constant values, motivating a gradient search algorithm. Reformulating as an appropriate linear program with network flow structure, we estimate the derivative (using infinitesimal perturbation analysis) of the total cost as a function of the thresholds. We validate the performance of the threshold policies empirically using data from a high-end North American retailer. Our two-location experiments demonstrate that local thresholds perform better than global thresholds in a wide variety of settings. Conversely, in a narrow region with negatively correlated online demand between locations and very low shipping costs, global threshold outperforms local thresholds. A hybrid policy only marginally improves on the better of the two. In multiple periods, we study one- and two-location models and provide insights into effective solution methods for the general case. Managerial implications: Our methods provide effective algorithms to manage fulfillment costs for online orders, demonstrating a significant reduction over policies that treat each location separately and reflecting the significant advantage of incorporating shipping in computing thresholds. Numerical studies provide insights as to why local thresholds perform well in a wide variety of situations.
Keywords: omnichannel retail; stochastic programming; infinitesimal perturbation analysis; dynamic programming (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/msom.2021.1024 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormsom:v:24:y:2022:i:3:p:1650-1663
Access Statistics for this article
More articles in Manufacturing & Service Operations Management from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().