EconPapers    
Economics at your fingertips  
 

Urban Bike Lane Planning with Bike Trajectories: Models, Algorithms, and a Real-World Case Study

Sheng Liu (), Zuo-Jun Max Shen () and Xiang Ji ()
Additional contact information
Sheng Liu: Rotman School of Management, University of Toronto, Toronto, Ontario M5S 3E6, Canada
Zuo-Jun Max Shen: College of Engineering, University of California, Berkeley, Berkeley, California 94720; Faculty of Engineering, Faculty of Business and Economics, University of Hong Kong, Hong Kong, China
Xiang Ji: Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544

Manufacturing & Service Operations Management, 2022, vol. 24, issue 5, 2500-2515

Abstract: Problem definition : We study an urban bike lane planning problem based on the fine-grained bike trajectory data, which are made available by smart city infrastructure, such as bike-sharing systems. The key decision is where to build bike lanes in the existing road network. Academic/practical relevance : As bike-sharing systems become widespread in the metropolitan areas over the world, bike lanes are being planned and constructed by many municipal governments to promote cycling and protect cyclists. Traditional bike lane planning approaches often rely on surveys and heuristics. We develop a general and novel optimization framework to guide the bike lane planning from bike trajectories. Methodology : We formalize the bike lane planning problem in view of the cyclists’ utility functions and derive an integer optimization model to maximize the utility. To capture cyclists’ route choices, we develop a bilevel program based on the Multinomial Logit model. Results : We derive structural properties about the base model and prove that the Lagrangian dual of the bike lane planning model is polynomial-time solvable. Furthermore, we reformulate the route-choice-based planning model as a mixed-integer linear program using a linear approximation scheme. We develop tractable formulations and efficient algorithms to solve the large-scale optimization problem. Managerial implications : Via a real-world case study with a city government, we demonstrate the efficiency of the proposed algorithms and quantify the trade-off between the coverage of bike trips and continuity of bike lanes. We show how the network topology evolves according to the utility functions and highlight the importance of understanding cyclists’ route choices. The proposed framework drives the data-driven urban-planning scheme in smart city operations management.

Keywords: smart city; urban planning; facility location; optimization; integer programming (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/msom.2021.1023 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormsom:v:24:y:2022:i:5:p:2500-2515

Access Statistics for this article

More articles in Manufacturing & Service Operations Management from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormsom:v:24:y:2022:i:5:p:2500-2515