Adaptive Sequential Experiments with Unknown Information Arrival Processes
Yonatan Gur () and
Ahmadreza Momeni ()
Additional contact information
Yonatan Gur: Stanford University, Stanford, California 94305
Ahmadreza Momeni: Stanford University, Stanford, California 94305
Manufacturing & Service Operations Management, 2022, vol. 24, issue 5, 2666-2684
Abstract:
Problem definition: Sequential experiments that are deployed in a broad range of practices are characterized by an exploration-exploitation trade-off that is well understood when in each time period feedback is received only on the action that was selected in that period. However, in many practical settings, additional information may become available between decision epochs. We study the performance that one may achieve when leveraging such auxiliary information and the design of algorithms that effectively do so without prior knowledge of the information arrival process. Methodology/results: Our formulation considers a broad class of distributions that are informative about rewards from actions and allows auxiliary observations from these distributions to arrive according to an arbitrary and a priori unknown process. When it is known how to map auxiliary observations to reward estimates, we characterize the best achievable performance as a function of the information arrival process. In terms of achieving optimal performance, we establish that upper confidence bound and Thompson sampling algorithms possess natural robustness with respect to the information arrival process, which uncovers a novel property of these popular algorithms. When the mappings connecting auxiliary observations and rewards are a priori unknown, we characterize a necessary and sufficient condition under which auxiliary information allows performance improvement and devise an adaptive policy (termed 2UCBs) that guarantees near optimality. We use a data set from a large media site to analyze the value that may be captured by leveraging auxiliary observations in the design of content recommendations. Managerial implications: Our study highlights the importance of utilizing auxiliary information in the design of sequential experiments and characterizes how salient features of the auxiliary information stream impact performance. Our study also emphasizes the risk in processing auxiliary information using nonadaptive approaches that are predicated on correct interpretation of this information, as opposed to deploying flexible, adaptive methods.
Keywords: experiments; stochastic methods; service operations; OM-marketing interface; pricing and revenue management (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/msom.2022.1116 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ormsom:v:24:y:2022:i:5:p:2666-2684
Access Statistics for this article
More articles in Manufacturing & Service Operations Management from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().