EconPapers    
Economics at your fingertips  
 

Forecasting Airport Transfer Passenger Flow Using Real-Time Data and Machine Learning

Xiaojia Guo (), Yael Grushka-Cockayne () and Bert De Reyck ()
Additional contact information
Xiaojia Guo: Robert H. Smith School of Business, University of Maryland, College Park, Maryland 20742
Yael Grushka-Cockayne: Darden School of Business, University of Virginia, Charlottesville, Virginia 22903
Bert De Reyck: Lee Kong Chian School of Business, Singapore Management University, Singapore 178899

Manufacturing & Service Operations Management, 2022, vol. 24, issue 6, 3193-3214

Abstract: Problem definition : Airports and airlines have been challenged to improve decision making by producing accurate forecasts in real time. We develop a two-phased predictive system that produces forecasts of transfer passenger flows at an airport. In the first phase, the system predicts the distribution of individual transfer passengers’ connection times. In the second phase, the system samples from the distribution of individual connection times and produces distributional forecasts for the number of passengers arriving at the immigration and security areas. Academic/practical relevance : To our knowledge, this work is the first to apply machine learning for predicting real-time distributional forecasts of journeys in an airport using passenger level data. Better forecasts of these journeys can help optimize passenger experience and improve airport resource deployment. Methodology : The predictive system developed is based on a regression tree combined with copula-based simulations. We generalize the tree method to predict distributions, moving beyond point forecasts. We also formulate a newsvendor-based resourcing problem to evaluate decisions made by applying the new predictive system. Results : We show that, when compared with benchmarks, our two-phased approach is more accurate in predicting both connection times and passenger flows. Our approach also has the potential to reduce resourcing costs at the immigration and transfer security areas. Managerial implications : Our predictive system can produce accurate forecasts frequently and in real time. With these forecasts, an airport’s operating team can make data-driven decisions, identify late passengers, and assist them to make their connections. The airport can also update its resourcing plans based on the prediction of passenger flows. Our predictive system can be generalized to other operations management domains, such as hospitals or theme parks, in which customer flows need to be accurately predicted.

Keywords: quantile forecasts; regression tree; passenger flow management; data-driven operations (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/msom.2021.0975 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormsom:v:24:y:2022:i:6:p:3193-3214

Access Statistics for this article

More articles in Manufacturing & Service Operations Management from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormsom:v:24:y:2022:i:6:p:3193-3214