EconPapers    
Economics at your fingertips  
 

Geographic Virtual Pooling of Hospital Resources: Data-Driven Trade-off Between Waiting and Traveling

Yangzi Jiang (), Hossein Abouee Mehrizi () and Jan A. Van Mieghem ()
Additional contact information
Yangzi Jiang: School of Management and Economics, The Chinese University of Hong Kong, Shenzhen 518172, China
Hossein Abouee Mehrizi: Department of Management Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
Jan A. Van Mieghem: Kellogg School of Management, Northwestern University, Evanston, Illinois 60208

Manufacturing & Service Operations Management, 2023, vol. 25, issue 4, 1527-1544

Abstract: Problem definition : Patient-level data from 72 magnetic resonance imaging (MRI) hospitals in Ontario, Canada from 2013 to 2017 show that over 60% of patients exceeded their wait time targets. We conduct a data-driven analysis to quantify the reduction in the patient fraction exceeding (FET) target for MRI services through geographic virtual resource-sharing while limiting incremental driving time. We present a data-driven method to solve the geographic pooling problem of partitioning 72 hospitals with heterogeneous patients with different wait time targets located in a two-dimensional region into a set of clusters. Methodology/results : We propose an “augmented-priority rule,” which is a sequencing rule that balances the patient’s initial priority class and the number of days until her wait time target. We then use neural networks to predict patient arrival and service times. We combine this predicted information and the sequencing rule to implement “advance scheduling,” which informs the patient of her treatment day and location when requesting an MRI scan. We then optimize the number of geographic resource pools among the 72 hospitals using genetic algorithms. Our resource-pooling model lowers the FET from 66% to 36% while constraining the average incremental travel time below three hours. In addition, our model shows that only 10 additional scanners are needed to achieve 10% FET, whereas 50 additional scanners would be needed without resource sharing. Over 70% of the hospitals are not worse off financially. Each individual hospital, measured over at least two weeks, achieves a higher machine utilization and a lower FET. Managerial implications : Our paper provides a practical, data-driven geographical resource-sharing model that hospitals can readily implement. Our method achieves a near-optimal solution with low computational complexity. Using smart data-driven scheduling, a little extra capacity placed at the right location is all we need to achieve the desired FET under geographic resource-sharing.

Keywords: healthcare; data driven; resource sharing; recurrent neural network; genetic algorithms (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/msom.2023.1225 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ormsom:v:25:y:2023:i:4:p:1527-1544

Access Statistics for this article

More articles in Manufacturing & Service Operations Management from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ormsom:v:25:y:2023:i:4:p:1527-1544