EconPapers    
Economics at your fingertips  
 

Constrained Maximum-Entropy Sampling

Jon Lee
Additional contact information
Jon Lee: University of Kentucky, Lexington, Kentucky

Operations Research, 1998, vol. 46, issue 5, 655-664

Abstract: A fundamental experimental design problem is to select a most informative subset, having prespecified size, from a set of correlated random variables. Instances of this problem arise in many applied domains such as meteorology, environmental statistics, and statistical geology. In these applications, observations can be collected at different locations and, possibly, at different times. Information is measured by “entropy.” Practical situations have further restrictions on the design space. For example, budgetary limits, geographical considerations, as well as legislative and political considerations may restrict the design space in a complicated manner. Using techniques of linear algebra, combinatorial optimization, and convex optimization, we develop upper and lower bounds on the optimal value for the Gaussian case. We describe how these bounds can be integrated into a branch-and-bound algorithm for the exact solution of these design problems. Finally, we describe how we have implemented this algorithm, and we present computational results for estimated covariance matrices corresponding to sets of environmental monitoring stations in the Ohio Valley of the United States.

Keywords: Design of experiments; maximum entropy sampling; integer programming; branch-and-bound; Nonlinear programming; discrete variables (search for similar items in EconPapers)
Date: 1998
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
http://dx.doi.org/10.1287/opre.46.5.655 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:46:y:1998:i:5:p:655-664

Access Statistics for this article

More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:oropre:v:46:y:1998:i:5:p:655-664