EconPapers    
Economics at your fingertips  
 

Bayesian Analysis of the Sequential Inspection Plan via the Gibbs Sampler

Young H. Chun ()
Additional contact information
Young H. Chun: Department of Information Systems and Decision Sciences, E. J. Ourso College of Business, Louisiana State University, Baton Rouge, Louisiana 70803

Operations Research, 2008, vol. 56, issue 1, 235-246

Abstract: A complex product, such as a software system, is often inspected more than once in a sequential manner to further improve its quality and reliability. In such a case, a particularly important task is to accurately estimate the number of errors still remaining in the product after a series of multiple inspections. In the paper, we first develop a maximum likelihood method of estimating both the number of undiscovered errors in the product and the detection probability. We then compare its performance with that of an existing estimation method that has several limitations. We also propose a Bayesian method with noninformative priors, which performs very well in a Monte Carlo simulation study. As the prior knowledge is elicited and incorporated in the analysis, the prediction accuracy of the Bayesian method improves even further. Thus, it would be worthwhile to use various estimation methods and compare their estimates in a specific inspection environment.

Keywords: reliability; inspection; statistics; Bayesian; probability; applications (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://dx.doi.org/10.1287/opre.1070.0501 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:56:y:2008:i:1:p:235-246

Access Statistics for this article

More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:oropre:v:56:y:2008:i:1:p:235-246