EconPapers    
Economics at your fingertips  
 

A Dynamic Principal-Agent Model with Hidden Information: Sequential Optimality Through Truthful State Revelation

Hao Zhang () and Stefanos Zenios ()
Additional contact information
Hao Zhang: Marshall School of Business, University of Southern California, Los Angeles, California 90089
Stefanos Zenios: Graduate School of Business, Stanford University, Stanford, California 94305

Operations Research, 2008, vol. 56, issue 3, 681-696

Abstract: This paper proposes a general framework for a large class of multiperiod principal-agent problems. In this framework, a principal has a primary stake in the performance of a system but delegates its control to an agent. The underlying system is a Markov decision process, where the state of the system can only be observed by the agent but the agent's action is observed by both parties. This paper develops a dynamic programming algorithm to derive optimal long-term contracts for the principal. The principal indirectly controls the underlying system by offering the agent a menu of continuation utility vectors along public information paths; the agent's best response, expressed in his choice of continuation utilities, induces truthful state revelation and results in actions that maximize the principal's expected payoff. This problem is meaningful to the operations research community because it can be framed as the problem of optimally designing the reward structure of a Markov decision process with hidden states and has many applications of interest as discussed in this paper.

Keywords: games; stochastic; dynamic principal-agent model; adverse selection; dynamic programming; Markov; decision processes (search for similar items in EconPapers)
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Downloads: (external link)
http://dx.doi.org/10.1287/opre.1070.0451 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:56:y:2008:i:3:p:681-696

Access Statistics for this article

More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:oropre:v:56:y:2008:i:3:p:681-696