EconPapers    
Economics at your fingertips  
 

Fair Dynamic Routing in Large-Scale Heterogeneous-Server Systems

Mor Armony () and Amy R. Ward ()
Additional contact information
Mor Armony: Stern School of Business, New York University, New York, New York 10012
Amy R. Ward: Marshall School of Business, University of Southern California, Los Angeles, California 90089

Operations Research, 2010, vol. 58, issue 3, 624-637

Abstract: In a call center, there is a natural trade-off between minimizing customer wait time and fairly dividing the workload among agents of different skill levels. The relevant control is the routing policy, that is, the decision concerning which agent should handle an arriving call when more than one agent is available. We formulate an optimization problem for a call center with heterogeneous agent pools, in which each pool is distinguished by the speed at which agents in that pool handle calls. The objective is to minimize steady-state expected customer wait time subject to a “fairness” constraint on the workload division. We first solve the optimization problem by formulating it as a Markov decision process (MDP), and solving a related linear program. We note that this approach does not in general lead to an optimal policy that has a simple structure. Fortunately, the optimal policy does appear to have a simple structure as the system size grows large, in the Halfin-Whitt many-server heavy-traffic limit regime. Therefore, we solve the diffusion control problem that arises in this regime and interpret its solution as a policy for the original system. The resulting routing policy is a threshold policy that determines server pool priorities based on the total number of customers in the system. We prove that a continuous modification of our proposed threshold routing policy is asymptotically optimal in the Halfin-Whitt limit regime. We furthermore present simulation results to illustrate that our proposed threshold routing policy outperforms a common routing policy used in call centers (that routes to the agent that has been idle the longest).

Keywords: probability; diffusion; stochastic model applications; queues; approximations; diffusion models; limit theorems (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)

Downloads: (external link)
http://dx.doi.org/10.1287/opre.1090.0777 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:58:y:2010:i:3:p:624-637

Access Statistics for this article

More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:oropre:v:58:y:2010:i:3:p:624-637