EconPapers    
Economics at your fingertips  
 

Dynamic Pricing with an Unknown Demand Model: Asymptotically Optimal Semi-Myopic Policies

N. Bora Keskin () and Assaf Zeevi ()
Additional contact information
N. Bora Keskin: Booth School of Business, University of Chicago, Chicago, Illinois 60637
Assaf Zeevi: Graduate School of Business, Columbia University, New York, New York 10027

Operations Research, 2014, vol. 62, issue 5, 1142-1167

Abstract: We consider a monopolist who sells a set of products over a time horizon of T periods. The seller initially does not know the parameters of the products' linear demand curve, but can estimate them based on demand observations. We first assume that the seller knows nothing about the parameters of the demand curve, and then consider the case where the seller knows the expected demand under an incumbent price. It is shown that the smallest achievable revenue loss in T periods, relative to a clairvoyant who knows the underlying demand model, is of order T in the former case and of order log T in the latter case. To derive pricing policies that are practically implementable, we take as our point of departure the widely used policy called greedy iterated least squares (ILS), which combines sequential estimation and myopic price optimization. It is known that the greedy ILS policy itself suffers from incomplete learning, but we show that certain variants of greedy ILS achieve the minimum asymptotic loss rate. To highlight the essential features of well-performing pricing policies, we derive sufficient conditions for asymptotic optimality.

Keywords: revenue management; pricing; sequential estimation; exploration-exploitation (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (34)

Downloads: (external link)
http://dx.doi.org/10.1287/opre.2014.1294 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:62:y:2014:i:5:p:1142-1167

Access Statistics for this article

More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:oropre:v:62:y:2014:i:5:p:1142-1167