EconPapers    
Economics at your fingertips  
 

Information Relaxations, Duality, and Convex Stochastic Dynamic Programs

David B. Brown () and James E. Smith ()
Additional contact information
David B. Brown: Fuqua School of Business, Duke University, Durham, North Carolina 27708
James E. Smith: Fuqua School of Business, Duke University, Durham, North Carolina 27708

Operations Research, 2014, vol. 62, issue 6, 1394-1415

Abstract: We consider the information relaxation approach for calculating performance bounds for stochastic dynamic programs (DPs). This approach generates performance bounds by solving problems with relaxed nonanticipativity constraints and a penalty that punishes violations of these nonanticipativity constraints. In this paper, we study DPs that have a convex structure and consider gradient penalties that are based on first-order linear approximations of approximate value functions. When used with perfect information relaxations, these penalties lead to subproblems that are deterministic convex optimization problems. We show that these gradient penalties can, in theory, provide tight bounds for convex DPs and can be used to improve on bounds provided by other relaxations, such as Lagrangian relaxation bounds. Finally, we apply these results in two example applications: first, a network revenue management problem that describes an airline trying to manage seat capacity on its flights; and second, an inventory management problem with lead times and lost sales. These are challenging problems of significant practical interest. In both examples, we compute performance bounds using information relaxations with gradient penalties and find that some relatively easy-to-compute heuristic policies are nearly optimal.

Keywords: dynamic programming; information relaxations; network revenue management; lost-sales inventory models (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
http://dx.doi.org/10.1287/opre.2014.1322 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:62:y:2014:i:6:p:1394-1415

Access Statistics for this article

More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:oropre:v:62:y:2014:i:6:p:1394-1415