EconPapers    
Economics at your fingertips  
 

Worst-Case Analysis of Process Flexibility Designs

David Simchi-Levi () and Yehua Wei ()
Additional contact information
David Simchi-Levi: Engineering Systems Division, Department of Civil and Environmental Engineering, and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Yehua Wei: Fuqua School of Business, Duke University, Durham, North Carolina 27708-0120

Operations Research, 2015, vol. 63, issue 1, 166-185

Abstract: Theoretical studies of process flexibility designs have mostly focused on expected sales. In this paper, we take a different approach by studying process flexibility designs from the worst-case point of view. To study the worst-case performances, we introduce the plant cover indices (PCIs), defined by bottlenecks in flexibility designs containing a fixed number of products. We prove that given a flexibility design, a general class of worst-case performance measures can be expressed as functions of the design’s PCIs and the given uncertainty set. This result has several major implications. First, it suggests a method to compare the worst-case performances of different flexibility designs without the need to know the specifics of the uncertainty sets. Second, we prove that under symmetric uncertainty sets and a large class of worst-case performance measures, the long chain, a celebrated sparse design, is superior to a large class of sparse flexibility designs, including any design that has a degree of two on each of its product nodes. Third, we show that under stochastic demand, the classical Jordan and Graves (JG) index can be expressed as a function of the PCIs. Furthermore, the PCIs motivate a modified JG index that is shown to be more effective in our numerical study. Finally, the PCIs lead to a heuristic for finding sparse flexibility designs that perform well under expected sales and have lower risk measures in our computational study.

Keywords: process flexibility; flexible production; capacity planning; robust optimization; worst-case analysis (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://dx.doi.org/10.1287/opre.2014.1334 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:63:y:2015:i:1:p:166-185

Access Statistics for this article

More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:oropre:v:63:y:2015:i:1:p:166-185