EconPapers    
Economics at your fingertips  
 

Random Knockout Tournaments

Ilan Adler (), Yang Cao (), Richard Karp (), Erol A. Peköz () and Sheldon M. Ross ()
Additional contact information
Ilan Adler: Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, California 94720
Yang Cao: Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, California 90033
Richard Karp: Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720
Erol A. Peköz: Questrom School of Business, Boston University, Boston, Massachusetts 02215
Sheldon M. Ross: Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, California 90033

Operations Research, 2017, vol. 65, issue 6, 1589-1596

Abstract: We consider a random knockout tournament among players 1,…, n , in which each match involves two players. The match format is specified by the number of matches played in each round, where the constitution of the matches in a round is random. Supposing that there are numbers v 1 ,…, v n such that a match between i and j will be won by i with probability v i /( v i + v j ), we obtain a lower bound on the tournament win probability for the best player, as well as upper and lower bounds for all of the players. We also obtain additional bounds by considering the best and worst formats for player 1 in the special case v 1 > v 2 = v 3 = … = v n .

Keywords: games/group decisions; stochastic model applications; probability; sequential decision analysis (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1287/opre.2017.1657 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:65:y:2017:i:6:p:1589-1596

Access Statistics for this article

More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:oropre:v:65:y:2017:i:6:p:1589-1596