EconPapers    
Economics at your fingertips  
 

The Replenishment Schedule to Minimize Peak Storage Problem: The Gap Between the Continuous and Discrete Versions of the Problem

Dorit S. Hochbaum () and Xu Rao ()
Additional contact information
Dorit S. Hochbaum: Department of Industrial Engineering and Operations Research, University of California, Berkeley, California 94709
Xu Rao: Department of Industrial Engineering and Operations Research, University of California, Berkeley, California 94709

Operations Research, 2019, vol. 67, issue 5, 1345-1361

Abstract: The replenishment storage problem (RSP) is to minimize the storage capacity requirement for a deterministic demand, multi-item inventory system, where each item has a given reorder size and cycle length. We consider the discrete RSP, where reorders can only take place at an integer time unit within the cycle. Discrete RSP was shown to be NP-hard for constant joint cycle length (the least common multiple of the length of all individual cycles). We show here that discrete RSP is weakly NP-hard for constant joint cycle length and prove that it is strongly NP-hard for nonconstant joint cycle length. For constant joint cycle-length discrete RSP, we further present a pseudopolynomial time algorithm that solves the problem optimally and the first known fully polynomial time approximation scheme (FPTAS) for the single-cycle RSP. The scheme is utilizing a new integer programming formulation of the problem that is introduced here. For the strongly NP-hard RSP with nonconstant joint cycle length, we provide a polynomial time approximation scheme (PTAS), which for any fixed ɛ , provides a linear time ɛ approximate solution. The continuous RSP, where reorders can take place at any time within a cycle, seems (with our results) to be easier than the respective discrete problem. We narrow the previously known complexity gap between the continuous and discrete versions of RSP for the multi-cycle RSP (with either constant or nonconstant cycle length) and the single-cycle RSP with constant cycle length and widen the gap for single-cycle RSP with nonconstant cycle length. For the multi-cycle case and constant joint cycle length, the complexity status of continuous RSP is open, whereas it is proved here that the discrete RSP is weakly NP-hard. Under our conjecture that the continuous RSP is easier than the discrete one, this implies that continuous RSP on multi-cycle and constant joint cycle length (currently of unknown complexity status) is at most weakly NP-hard.

Keywords: deterministic inventory theory; complexity; approximation algorithm; weakly NP-hard; integer programming (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/opre.2018.1839 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:67:y:2019:i:5:p:1345-1361

Access Statistics for this article

More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:oropre:v:67:y:2019:i:5:p:1345-1361