EconPapers    
Economics at your fingertips  
 

A Generalized Black–Litterman Model

Shea D. Chen () and Andrew E. B. Lim ()
Additional contact information
Shea D. Chen: Eyon Holding Group, Taipei 10483, Taiwan
Andrew E. B. Lim: Department of Analytics and Operations, Department of Finance, and Institute for Operations Research and Analytics, National University of Singapore, 119245 Singapore

Operations Research, 2020, vol. 68, issue 2, 381-410

Abstract: The Black–Litterman model provides a framework for combining the forecasts of a backward-looking equilibrium model with the views of (several) forward-looking experts in a portfolio allocation decision. The classical version uses the capital asset pricing model to specify expected returns, and assumes that expert views are unbiased noisy observations of future returns. It combines the two using Bayes’ rule and the portfolio allocation decision is made on the basis of the updated forecast. The classical Black–Litterman model assumes that the equilibrium and expert models are accurately specified. This is generally not the case, however, and there may be substantial efficiency loss if misspecification is ignored. In this paper, we formulate a generalized Black–Litterman model that accounts for both misspecification and bias in the equilibrium and expert models. We show how to calibrate this model using historical view and return data, and study the value of our generalized model for portfolio construction. More generally, this paper shows how the views of multiple experts can be modeled as a Bayesian graphical model and estimated using historical data, which may be of interest in applications that involve the aggregation of expert opinions for the purpose of decision making.

Keywords: Black–Litterman model; portfolio selection; graphical models; Bayesian methods; Gibbs sampling; central limit theorem (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1287/opre.2019.1893 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:68:y:2020:i:2:p:381-410

Access Statistics for this article

More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:oropre:v:68:y:2020:i:2:p:381-410