Customer Choice Models vs. Machine Learning: Finding Optimal Product Displays on Alibaba
Jacob Feldman (),
Dennis J. Zhang (),
Xiaofei Liu () and
Nannan Zhang ()
Additional contact information
Jacob Feldman: Olin Business School, Washington University in St. Louis, St. Louis, Missouri 63130
Dennis J. Zhang: Olin Business School, Washington University in St. Louis, St. Louis, Missouri 63130
Xiaofei Liu: Alibaba Group Inc., Hangzhou 311100, China
Nannan Zhang: Alibaba Group Inc., Hangzhou 311100, China
Operations Research, 2022, vol. 70, issue 1, 309-328
Abstract:
We compare the performance of two approaches for finding the optimal set of products to display to customers landing on Alibaba’s two online marketplaces, Tmall and Taobao. We conducted a large-scale field experiment, in which we randomly assigned 10,421,649 customer visits during a one-week-long period to one of the two approaches and measured the revenue generated per customer visit. The first approach we tested was Alibaba’s current practice, which embeds product and customer features within a sophisticated machine-learning algorithm to estimate the purchase probabilities of each product for the customer at hand. The products with the largest expected revenue (revenue × predicted purchase probability) are then made available for purchase. Our second approach, which we developed and implemented in collaboration with Alibaba engineers, uses a featurized multinomial logit (MNL) model to predict purchase probabilities for each arriving customer. We used historical sales data to fit the MNL model, and then, for each arriving customer, we solved a cardinality-constrained assortment-optimization problem under the MNL model to find the optimal set of products to display. Our field experiments revealed that the MNL-based approach generated 5.17 renminbi (RMB) per customer visit, compared with the 4.04 RMB per customer visit generated by the machine-learning-based approach when both approaches were given access to the same set of the 25 most important features. This improvement represents a 28% gain in revenue per customer visit, which corresponds to a 4 million RMB improvement over the week in which the experiments were conducted. Motivated by the results of our initial field experiment, Alibaba then implemented a full-featured version of our MNL-based approach, which now serves the majority of customers in this setting. Using another small-scale field experiment, we estimate that our new MNL-based approach that utilizes the full feature set is able to increase Alibaba’s annual revenue by 87.26 million RMB (12.42 million U.S. dollars).
Keywords: OR Practice; choice models; product assortment; machine learning; field experiment; retail operations (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/opre.2021.2158 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:70:y:2022:i:1:p:309-328
Access Statistics for this article
More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().