EconPapers    
Economics at your fingertips  
 

Scheduling Parallel-Task Jobs Subject to Packing and Placement Constraints

Mehrnoosh Shafiee () and Javad Ghaderi ()
Additional contact information
Mehrnoosh Shafiee: Department of Electrical Engineering, Columbia University, New York, New York 10027
Javad Ghaderi: Department of Electrical Engineering, Columbia University, New York, New York 10027

Operations Research, 2022, vol. 70, issue 6, 3403-3419

Abstract: Motivated by modern parallel computing applications, we consider the problem of scheduling parallel-task jobs with heterogeneous resource requirements in a cluster of machines. Each job consists of a set of tasks that can be processed in parallel; however, the job is considered completed only when all its tasks finish their processing, which we refer to as the synchronization constraint. Furthermore, assignment of tasks to machines is subject to placement constraints, that is, each task can be processed only on a subset of machines, and processing times can also be machine dependent. Once a task is scheduled on a machine, it requires a certain amount of resource from that machine for the duration of its processing. A machine can process ( pack ) multiple tasks at the same time; however, the cumulative resource requirement of the tasks should not exceed the machine’s capacity. Our objective is to minimize the weighted average of the jobs’ completion times. The problem, subject to synchronization, packing, and placement constraints, is NP-hard, and prior theoretical results only concern much simpler models. For the case that migration of tasks among the placement-feasible machines is allowed, we propose a preemptive algorithm with an approximation ratio of ( 6 + ϵ ) . In the special case that only one machine can process each task, we design an algorithm with an improved approximation ratio of four. Finally, in the case that migrations (and preemptions) are not allowed, we design an algorithm with an approximation ratio of 24. Our algorithms use a combination of linear program relaxation and greedy packing techniques. We present extensive simulation results, using a real traffic trace, that demonstrate that our algorithms yield significant gains over the prior approaches.

Keywords: Optimization; scheduling algorithms; approximation algorithms; data-parallel computing; datacenters (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/opre.2021.2198 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:70:y:2022:i:6:p:3403-3419

Access Statistics for this article

More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:oropre:v:70:y:2022:i:6:p:3403-3419