EconPapers    
Economics at your fingertips  
 

Bayesian Inventory Control: Accelerated Demand Learning via Exploration Boosts

Ya-Tang Chuang () and Michael Jong Kim ()
Additional contact information
Ya-Tang Chuang: Department of Industrial and Information Management, National Cheng Kung University, Tainan City 701, Taiwan
Michael Jong Kim: Sauder School of Business, University of British Columbia, Vancouver, British Columbia M5S 3G8, Canada

Operations Research, 2023, vol. 71, issue 5, 1515-1529

Abstract: We investigate Bayesian inventory control problems where parameters of the demand distribution are not known a priori but need to be learned using right-censored sales data. A Bayesian framework is adopted for demand learning, and the corresponding control problem is analyzed via Bayesian dynamic programming (BDP). In the Bayesian setting, it is known that the BDP-optimal decision is equal to the sum of the myopic-optimal decision plus a nonnegative “exploration boost.” The goal of this paper is to (i) identify those applications in which adding an exploration boost is important and (ii) characterize the form of the exploration boost. In contrast to recent research that suggests that ignoring the exploration boost (i.e., adopting the myopic policy) can perform reasonably well in certain settings, we show that for applications with moderate time horizons and high parameter uncertainty, the optimality gap between the myopic policy and the BDP-optimal policy can be arbitrarily large and in particular, grows in proportion to the posterior index of dispersion of the unknown mean demand. With regard to characterizing the form of the BDP-optimal exploration boost, we prove that the exploration boost is also proportional to the posterior index of dispersion of the unknown mean demand. This characterization expresses in clear terms the way in which the statistical learning and inventory control are jointly optimized; when there is a high degree of parameter uncertainty (encoded as a large posterior index of dispersion), inventory decisions are boosted to induce a higher chance of observing more sales data so as to more quickly resolve statistical uncertainty (i.e., accelerated demand learning), and to not do so will necessarily lead to poor performance.

Keywords: Operations and Supply Chains; inventory management; Bayesian learning; exploration versus exploitation trade-off; Bayesian dynamic programming (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/opre.2023.2467 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:71:y:2023:i:5:p:1515-1529

Access Statistics for this article

More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:oropre:v:71:y:2023:i:5:p:1515-1529