Linear Classifiers Under Infinite Imbalance
Paul Glasserman () and
Mike Li ()
Additional contact information
Paul Glasserman: Columbia Business School, New York, New York 10027
Mike Li: Columbia Business School, New York, New York 10027
Operations Research, 2025, vol. 73, issue 2, 1075-1101
Abstract:
We study the behavior of linear discriminant functions for binary classification in the infinite-imbalance limit, where the sample size of one class grows without bound while the sample size of the other remains fixed. The coefficients of the classifier minimize an empirical loss specified through a weight function. We show that for a broad class of weight functions, the intercept diverges but the rest of the coefficient vector has a finite almost sure limit under infinite imbalance, extending prior work on logistic regression. The limit depends on the left-tail growth rate of the weight function, for which we distinguish two cases: subexponential and exponential. The limiting coefficient vectors reflect robustness or conservatism properties in the sense that they optimize against certain worst-case alternatives. In the subexponential case, the limit is equivalent to an implicit choice of upsampling distribution for the minority class. We apply these ideas in a credit risk setting, with particular emphasis on performance in the high-sensitivity and high-specificity regions.
Keywords: Stochastic; Models; data analysis; finance; statistics (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://dx.doi.org/10.1287/opre.2021.0376 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:oropre:v:73:y:2025:i:2:p:1075-1101
Access Statistics for this article
More articles in Operations Research from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().