On the Value of Optimal Myopic Solutions for Dynamic Routing and Scheduling Problems in the Presence of User Noncompliance
Warren B. Powell,
Michael T. Towns and
Arun Marar
Additional contact information
Warren B. Powell: Department of Civil Engineering and Operations Research, Princeton University, Princeton, New Jersey 08544
Michael T. Towns: Department of Civil Engineering and Operations Research, Princeton University, Princeton, New Jersey 08544
Arun Marar: Department of Civil Engineering and Operations Research, Princeton University, Princeton, New Jersey 08544
Transportation Science, 2000, vol. 34, issue 1, 67-85
Abstract:
The most common approach for modeling and solving routing and scheduling problems in a dynamic setting is to solve, as close to optimal as possible, a series of deterministic, myopic models. The argument is most often made that, if the data changes, then we should simply reoptimize. We use the setting of the load matching problem that arises in truckload trucking to compare the value of optimal myopic solutions versus varying degrees of greedy, suboptimal myopic solutions in the presence of three forms of uncertainty: customer demands, travel times, and, of particular interest, user noncompliance. A simulation environment is used to test different dispatching strategies under varying levels of system dynamism. An important issue we consider is that of user noncompliance, which is the effect of optimizing when users do not adopt all of the recommendations of the model. Our results show that (myopic) optimal solutions only slightly outperform greedy solutions under relatively high levels of uncertainty, and that a particular suboptimal solution actually outperforms optimal solutions under a wide range of conditions.
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://dx.doi.org/10.1287/trsc.34.1.67.12283 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ortrsc:v:34:y:2000:i:1:p:67-85
Access Statistics for this article
More articles in Transportation Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().