Estimating Nonparametric Random Utility Models with an Application to the Value of Time in Heterogeneous Populations
Fabian Bastin (),
Cinzia Cirillo () and
Philippe L. Toint ()
Additional contact information
Fabian Bastin: Department of Computing Science and Operational Research, University of Montréal, Montréal, Québec H3C 3J7, Canada, and CIRRELT, Department of Computing Science and Operational Research, University of Montréal, Montréal, Québec H3C 3J7, Canada
Cinzia Cirillo: Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland 20742
Philippe L. Toint: Department of Mathematics, University of Namur, B5000 Namur, Belgium
Transportation Science, 2010, vol. 44, issue 4, 537-549
Abstract:
The estimation of random parameters by means of mixed logit models is now current practice for the analysis of transportation behaviour. One of the most straightforward applications is the derivation of willingness-to-pay distribution over a heterogeneous population, an important element for dynamic tolling strategies on congested networks. In numerous practical cases, the underlying discrete choice models involve parametric distributions that are a priori specified and whose parameters are estimated. This approach can however lead to many problems for realistic interpretation, such as negative value of time, etc.In this paper, we propose to capture the randomness present in the model by using a new nonparametric estimation method, based on the approximation of inverse cumulative distribution functions. This technique is applied to simulated data, and the ability to recover both parametric and nonparametric random vectors is tested. The nonparametric mixed logit model is also used on real data derived from a stated preference survey conducted in the region of Brussels (Belgium). The model presents multiple choices and is estimated on repeated observations. The obtained results provide a more realistic interpretation of the observed behaviours.
Keywords: mixed logit; nonparametric estimation; B-spline; constrained optimization (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://dx.doi.org/10.1287/trsc.1100.0321 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ortrsc:v:44:y:2010:i:4:p:537-549
Access Statistics for this article
More articles in Transportation Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().