Two-Stage Stochastic Mixed-Integer Programming with Chance Constraints for Extended Aircraft Arrival Management
Ahmed Khassiba (),
Fabian Bastin (),
Sonia Cafieri (),
Bernard Gendron () and
Marcel Mongeau ()
Additional contact information
Ahmed Khassiba: École nationale de l'aviation civile (ENAC), Université de Toulouse, 31055 Toulouse Cedex 4, France; Département d'informatique et de recherche opérationnelle (DIRO), Université de Montréal, Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport (CIRRELT), Montréal, Quebec H3T 1J4, Canada
Fabian Bastin: Département d'informatique et de recherche opérationnelle (DIRO), Université de Montréal, Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport (CIRRELT), Montréal, Quebec H3T 1J4, Canada
Sonia Cafieri: École nationale de l'aviation civile (ENAC), Université de Toulouse, 31055 Toulouse Cedex 4, France;
Bernard Gendron: Département d'informatique et de recherche opérationnelle (DIRO), Université de Montréal, Centre interuniversitaire de recherche sur les réseaux d'entreprise, la logistique et le transport (CIRRELT), Montréal, Quebec H3T 1J4, Canada
Marcel Mongeau: École nationale de l'aviation civile (ENAC), Université de Toulouse, 31055 Toulouse Cedex 4, France;
Transportation Science, 2020, vol. 54, issue 4, 897-919
Abstract:
The extended aircraft arrival management problem, as an extension of the classic aircraft landing problem, seeks to preschedule aircraft on a destination airport a few hours before their planned landing times. A two-stage stochastic mixed-integer programming model enriched by chance constraints is proposed in this paper. The first-stage optimization problem determines an aircraft sequence and target times over a reference point in the terminal area, called initial approach fix (IAF), so as to minimize the landing sequence length. Actual times over the IAF are assumed to deviate randomly from target times following known probability distributions. In the second stage, actual times over the IAF are assumed to be revealed, and landing times are to be determined in view of minimizing a time-deviation impact cost function. A Benders reformulation is proposed, and acceleration techniques to Benders decomposition are sketched. Extensive results on realistic instances from Paris Charles-de-Gaulle airport show the benefit of two-stage stochastic and chance-constrained programming over a deterministic policy.
Keywords: aircraft arrival management; two-stage mixed-integer stochastic programming; Benders decomposition (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1287/trsc.2020.0991 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:inm:ortrsc:v:54:y:2020:i:4:p:897-919
Access Statistics for this article
More articles in Transportation Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().