EconPapers    
Economics at your fingertips  
 

Passenger-Centric Integrated Airline Schedule and Aircraft Recovery

Luis Cadarso () and Vikrant Vaze ()
Additional contact information
Luis Cadarso: Aerospace Systems and Transport Research Group, European Institute for Aviation Training and Accreditation (EIATA), Rey Juan Carlos University, Madrid 28943, Spain
Vikrant Vaze: Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755

Transportation Science, 2023, vol. 57, issue 3, 813-837

Abstract: Airlines are known to compete for passengers, and airline profitability heavily depends on the ability to estimate passenger demand, which in turn depends on flight schedules, fares, and the number of seats available at each fare, across all airlines. Interestingly, such competitive interactions and passenger substitution effects may not be limited to the planning stages. Existing regulations in some countries and regions impose monetary compensations to passengers in case of disruptions, altering the way they perceive the utility of other travel alternatives after the disruption starts. These passenger rights regulations may act as catalysts of passengers’ response to recovered schedules. Ignoring such passenger response behavior under operational disruptions may lead airlines to develop subpar recovery schedules. We develop a passenger response model and embed it into a novel integrated optimization approach that recovers airline schedules, aircraft, and passenger itineraries while endogenizing the impacts of airlines' decisions on passenger compensation and passenger response. We also develop an original solution approach, involving exact linearization of the nonlinear passenger cost terms, combined with delayed constraint generation for ensuring aircraft maintenance feasibility and an acceleration technique that penalizes deviations from planned schedules. Computational results on real-world problem instances from two major European airlines are reported, for scenarios involving disruptions, such as delayed flights, airport closures, and unexpected grounding of aircraft. Our approach is found to be tractable and scalable, producing solutions that are superior to airline’s actual decisions and highly robust in the face of passenger response uncertainty. Of particular relevance to the practitioners, our simulation results highlight that accounting for passengers’ disruption response behaviors, even in a highly approximate manner, yields significant benefits to the airline compared with not accounting for them at all, which is the current state-of-the-art.

Keywords: airline; disruption; recovery; aircraft; tail; flight schedule; maintenance; passenger response (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/trsc.2022.1174 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ortrsc:v:57:y:2023:i:3:p:813-837

Access Statistics for this article

More articles in Transportation Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ortrsc:v:57:y:2023:i:3:p:813-837