EconPapers    
Economics at your fingertips  
 

Modeling Multimodal Curbside Usage in Dynamic Networks

Jiachao Liu () and Sean Qian ()
Additional contact information
Jiachao Liu: Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
Sean Qian: Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213; Heinz College, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

Transportation Science, 2024, vol. 58, issue 6, 1277-1299

Abstract: The proliferation of emerging mobility technology has led to a significant increase in demand for ride-hailing services, on-demand deliveries, and micromobility services, transforming curb spaces into valuable public infrastructure for which multimodal transportation competes. However, the increasing utilization of curbs by different traffic modes has substantial societal impacts, further altering travelers’ choices and polluting the urban environment. Integrating the spatiotemporal characteristics of various behaviors related to curb utilization into general dynamic networks and exploring mobility patterns with multisource data remain a challenge. To address this issue, this study proposes a comprehensive framework of modeling curbside usage by multimodal transportation in a general dynamic network. The framework encapsulates route choices, curb space competition, and interactive effects among different curb users, and it embeds the dynamics of curb usage into a mesoscopic dynamic network model. Furthermore, a curb-aware dynamic origin-destination demand estimation framework is proposed to reveal the network-level spatiotemporal mobility patterns associated with curb usage through a physics-informed data-driven approach. The framework integrates emerging real-world curb use data in conjunction with other mobility data represented on computational graphs, which can be solved efficiently using the forward-backward algorithm on large-scale networks. The framework is examined on a small network as well as a large-scale real-world network. The estimation results on both networks are satisfactory and compelling, demonstrating the capability of the framework to estimate the spatiotemporal curb usage by multimodal transportation.

Keywords: dynamic traffic assignment; curbside management; mesoscopic traffic simulation; dynamic origin-destination demand estimation; computational graph (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://dx.doi.org/10.1287/trsc.2024.0522 (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:inm:ortrsc:v:58:y:2024:i:6:p:1277-1299

Access Statistics for this article

More articles in Transportation Science from INFORMS Contact information at EDIRC.
Bibliographic data for series maintained by Chris Asher ().

 
Page updated 2025-03-19
Handle: RePEc:inm:ortrsc:v:58:y:2024:i:6:p:1277-1299