Combination forecasts of output growth in a seven-country data set
Mark Watson and
James H. Stock
Additional contact information
James H. Stock: Department of Economics, Harvard University and the National Bureau of Economic Research, USA, Postal: Department of Economics, Harvard University and the National Bureau of Economic Research, USA
Journal of Forecasting, 2004, vol. 23, issue 6, 405-430
Abstract:
This paper uses forecast combination methods to forecast output growth in a seven-country quarterly economic data set covering 1959-1999, with up to 73 predictors per country. Although the forecasts based on individual predictors are unstable over time and across countries, and on average perform worse than an autoregressive benchmark, the combination forecasts often improve upon autoregressive forecasts. Despite the unstable performance of the constituent forecasts, the most successful combination forecasts, like the mean, are the least sensitive to the recent performance of the individual forecasts. While consistent with other evidence on the success of simple combination forecasts, this finding is difficult to explain using the theory of combination forecasting in a stationary environment. Copyright © 2004 John Wiley & Sons, Ltd.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (641)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.928 Link to full text; subscription required (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:23:y:2004:i:6:p:405-430
DOI: 10.1002/for.928
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().