A nonparametric method for asymmetrically extending signal extraction filters
Tucker McElroy ()
Journal of Forecasting, 2011, vol. 30, issue 7, 597-621
Abstract:
Two important problems in the X-11 seasonal adjustment methodology are the construction of standard errors and the handling of the boundaries. We adapt the ‘implied model approach’ of Kaiser and Maravall to achieve both objectives in a nonparametric fashion. The frequency response function of an X‐11 linear filter is used, together with the periodogram of the differenced data, to define spectral density estimates for signal and noise. These spectra are then used to define a matrix smoother, which in turn generates an estimate of the signal that is linear in the data. Estimates of the signal are provided at all time points in the sample, and the associated time‐varying signal extraction mean squared errors are a by‐product of the matrix smoother theory. After explaining our method, it is applied to popular nonparametric filters such as the Hodrick–Prescott (HP), the Henderson trend, and ideal low‐pass and band‐pass filters, as well as X‐11 seasonal adjustment, trend, and irregular filters. Finally, we illustrate the method on several time series and provide comparisons with X‐12‐ARIMA seasonal adjustments. Copyright (C) 2010 John Wiley & Sons, Ltd.
Keywords: ARIMA model; nonstationary time series; seasonal adjustment; X‐11 (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1002/for.1175
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jof:jforec:v:30:y:2011:i:7:p:597-621
Access Statistics for this article
Journal of Forecasting is currently edited by Derek W. Bunn
More articles in Journal of Forecasting from John Wiley & Sons, Ltd.
Bibliographic data for series maintained by Wiley-Blackwell Digital Licensing () and Christopher F. Baum ().