Economies of scale and the optimality of rotational dynamics in forestry
Mette Termansen ()
Environmental & Resource Economics, 2007, vol. 37, issue 4, 643-659
Abstract:
Forest harvesting is traditionally analyzed in terms of the Faustmann rotation model. This paper considers the identification of optimal forest harvest regimes using jump controls. This approach enables the structural assumptions of clear-cut technology and identical cycles in perpetuity which are imposed in a Faustmann model to be relaxed. Jump control models permit investigation of the biological and economic conditions which favour continuous growth management regimes as opposed to clear-cut harvest regimes. A numerical solution approach to the jump control model is presented. The link between the harvest cost function and the optimal biomass path is analyzed. Economies of scale are shown to generate rotational harvest as optimal policies. Copyright Springer Science+Business Media, Inc. 2007
Keywords: Economies of scale; Faustmann; Forest management; Jump controls; Stock discontinuities; Q23; C61 (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://hdl.handle.net/10.1007/s10640-007-9081-z (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:enreec:v:37:y:2007:i:4:p:643-659
Ordering information: This journal article can be ordered from
http://www.springer. ... al/journal/10640/PS2
DOI: 10.1007/s10640-007-9081-z
Access Statistics for this article
Environmental & Resource Economics is currently edited by Ian J. Bateman
More articles in Environmental & Resource Economics from Springer, European Association of Environmental and Resource Economists Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().