Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems
Paul A. del Giorgio,
Jonathan J. Cole and
André Cimbleris
Additional contact information
Paul A. del Giorgio: Institute of Ecosystem Studies
Jonathan J. Cole: Institute of Ecosystem Studies
André Cimbleris: McGill Univesity
Nature, 1997, vol. 385, issue 6612, 148-151
Abstract:
Abstract PLANKTONIC bacteria are a fundamental component of the organic carbon cycle in aquatic systems1. Organic carbon consumption by planktonic bacteria is the sum of bacterial production (BP) and bacterial respiration (BR). It is now estimated that 30–60% of phytoplankton production (the amount of inorganic carbon fixed by phytoplankton photosynthesis, corrected for phytoplankton respiration) in marine and freshwater systems is processed by bacteria1–3. These estimates of carbon flow through bacteria are conservative, however, because losses due to bacterial respiration are seldom directly measured4,5. We report here that bacterial respiration is generally high, and tends to exceed phytoplankton net production in unproductive systems (less than 70 to 120 μg carbon per litre per day). A large proportion of the world's aquatic systems have phytoplankton productivities below this value6. Bacterial growth efficiency (BGE) is the result of BP and BR[BGE = BP/(BR + BP)]. Comparisons of our models of bacterial respiration with published models of bacterial secondary production1,7 show that bacterial growth efficiency must range from less than 10% to 25% in most freshwater and marine systems, well below the values commonly assumed in many current ecological models1,2,8,9. The imbalance between bacterial respiration and phytoplankton production suggests that in unproductive aquatic systems, the biological system is a net source of CO2.
Date: 1997
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/385148a0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:385:y:1997:i:6612:d:10.1038_385148a0
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/385148a0
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().