Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B
Matthew Holman,
Jihad Touma and
Scott Tremaine
Additional contact information
Matthew Holman: McLennan Physical Laboratories, University of Toronto
Jihad Touma: McDonald Observatory
Scott Tremaine: McLennan Physical Laboratories, University of Toronto
Nature, 1997, vol. 386, issue 6622, 254-256
Abstract:
Abstract The planet recently discovered1 orbiting the star 16 Cyg B has the largest eccentricity (e= 0.67) of any known planet. Planets that form in circumstellar disks are expected to have nearly circular orbits, although gravitational interactions in a system of two or more planets could generate high-eccentricity orbits2,3. Here we suggest that the eccentric orbit of 16 Cyg Bb arises from gravitational interactions with the distant companion star, 16 Cyg A. Assuming that 16 Cyg Bb formed in a nearly circular orbit, with the orbital plane inclined between 45° and 135° to the orbital plane of 16 Cyg A, and that there are no other planets with a mass similar to that of Jupiter within 30 astronomical units (AU, the average distance between the Earth and the Sun), then 16 Cyg Bb will oscillate between low-eccentricity and high-eccentricity orbits. The transitions between these orbits should occur every 107–109 years, with the planet spending up to 35 per cent of its lifetime with an eccentricity e> 0.6. These results imply that planetary orbits in binary stellar systems commonly experience periods of high eccentricity and dynamical chaos, and that such planets may occasionally collide with the primary star.
Date: 1997
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/386254a0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:386:y:1997:i:6622:d:10.1038_386254a0
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/386254a0
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().