Deep winds on Jupiter as measured by the Galileo probe
David H. Atkinson (),
Andrew P. Ingersoll and
Alvin Seiff
Additional contact information
David H. Atkinson: University of Idaho
Andrew P. Ingersoll: California Institute of Technology
Alvin Seiff: San Jose State University Foundation, NASA Ames Research Center
Nature, 1997, vol. 388, issue 6643, 649-650
Abstract:
Abstract The Doppler Wind Experiment on the Galileo probe provided the first in situ data on wind speeds in Jupiter's atmosphere. Initial analysis1 of the results indicated that wind speeds increase with depth, rather than decaying to zero below the cloud tops or remaining relatively constant as had previously been assumed2. But this earlier analysis was subject to several potential sources of error, as highlighted by the fact that wind speeds measured at the cloud tops did not seem to match those inferred from tracking clouds3 in images obtained by the Voyager spacecraft. Here we report new analyses of the probe data that use a corrected treatment of the timing errors, adopt the measured4 (rather than predicted) descent trajectory, and incorporate a new calibration of the instrumentation that takes into account the unexpectedly high temperatures encountered by the probe. We determine wind speeds at the cloud tops (700-mbar level) in the range 80–100 m s−1, in agreement with the results of cloud tracking; the speed increases dramatically between 1 and 4 bar, and then remains nearly constant at ∼170 m s−1down to the 21-bar level. The increase in wind speed implies a latitudinal density gradient of 0.5% per degree in the 1–2 bar altitude range, but whether these winds are driven by internal heat or absorbed sunlight remains uncertain.
Date: 1997
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/41718 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:nature:v:388:y:1997:i:6643:d:10.1038_41718
Ordering information: This journal article can be ordered from
https://www.nature.com/
DOI: 10.1038/41718
Access Statistics for this article
Nature is currently edited by Magdalena Skipper
More articles in Nature from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().